PARTIE 3: Réactions chimiques et milieux biologiques

TP 17

La chimie des équilibres acido-basiques

- **OBJECTIFS:** Mesurer le pH d'une solution aqueuse
 - Mettre en évidence la notion d'équilibre chimique
 - Mettre en évidence la notion d'acide fort et d'acide faible / de base forte et de base faible, dans l'eau

CONTEXTE DU SUJET:

Gérard Mentfaux a pris l'habitude de regarder à l'avance les chapitres qui vont être étudiés en classe. Concernant les acides et les base, il a trouvé dans son livre les écritures suivantes :

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$
 et $HC\ell + H_2O \rightarrow C\ell^- + H_3O^+$

L'existence des symboles \rightleftharpoons et \rightarrow l'interroge, il se demande s'il s'agit d'une erreur du livre ou si l'on peut utiliser aussi bien l'un que l'autre ou encore si ces deux écritures sont liées à deux situations différentes...

Pour solutionner cette situation il fait quelques recherches et dispose ainsi des informations suivantes :

Information 1: Le pH

Le pH d'une solution est lié à la concentration des ions oxonium, H₃O⁺, présents dans la solution par la relation: pH = $-\log[H_3O^+]$ soit $[H_3O^+] = 10^{-pH}$

Information 2 : État d'équilibre chimique

Une réaction chimique ne se traduit pas toujours par la disparition complète d'un réactif (limitant) c'est à dire qu'elle n'est pas toujours totale. De nombreuses réactions sont partielles et aboutissent à un équilibre (chimique) entre les réactifs de départ et les produits de la réaction. L'avancement final est alors inférieur à l'avancement maximal.

Information 3: Acide fort ou acide faible

Un acide AH est **faible** si sa réaction avec l'eau n'est pas totale : $AH_{(aq)} + H_2O_{(l)} \rightleftharpoons A^{-}_{(aq)} + H_3O^{+}_{(aq)}$ L'acide AH n'est pas totalement transformé en ions A.

Un acide AH est **fort** si sa réaction avec l'eau est totale : $AH_{(aq)} + H_2O_{(l)} \rightarrow A_{(aq)} + H_3O_{(aq)}^{\dagger}$ L'acide AH est totalement transformé en ions A.

Information 4 : Tableau d'avancement de la réaction entre l'acide éthanoïque et l'eau.

Équation ch	imique	CH ₃ COOH _(aq)	$_{+}$ $H_{2}O_{(\ell)}$ \rightleftharpoons	≥ CH ₃ COO (aq)	H ₃ O ⁺ (aq)								
État du système	Avancement	quantités de matière											
État initial	<i>x</i> = 0	n_0	Solvant	0	0								
En cours de transformation	х	n ₀ - x	Solvant	Х	Х								
État final	x_f	$n_0 - x_f$	Solvant	$x_f = [CH_3COO^-]_f.V$	$x_f = [H_3O^{\dagger}]_f.V$								

Information 5: Concentration en soluté apporté et concentration d'une espèce en solution

Lorsqu'on dissous une espèce en solution, sa réaction n'est pas toujours totale.

On distingue donc:

- \rightarrow la concentration en soluté apporté : $C_S = n_S / V_{solution}$ où n_S correspond à la quantité de soluté utilisé pour préparer la solution,
- \rightarrow la concentration d'une espèce en solution : [X] = n_X / $V_{solution}$ où n_X correspond à la quantité d'espèce X réellement présente en solution.

 $\text{Dans I'exemple de I'information 4, } C_{\text{CH}_3\text{COOH}} = \frac{n_0}{V} \text{ et } \left[\text{CH}_3\text{COOH} \right]_f = \frac{n_0 - x_f}{V} \text{ donc } C_{\text{CH}_3\text{COOH}} > \left[\text{CH}_3\text{COOH} \right]_f$

PRODUITS ET MATÉRIEL À DISPOSITION:

- \rightarrow solution aqueuse d'acide éthanoïque de concentration en soluté apporté $C_{CH_3COOH} = 1.0 \times 10^{-2} \text{ mol.L}^{-1}$
- ightarrow solution aqueuse d'acide chlorhydrique de concentration en soluté apporté $C_{HC\ell} = 1.0 \times 10^{-2} \text{ mol.L}^{-1}$
- → pH-mètre avec solutions tampon et notice d'étalonnage ;
- → agitateur magnétique ;
- → matériel usuel de laboratoire...

TRAVAIL À EFFECTUER:

ANALYSER: ② 30 min conseillées	
1. Comment calculer l'avancement maximal de la transformation de l'acide éthanoïque avec l'eau qu se produit dans la solution à disposition ? Effectuer les calculs pour un volume fictif de 100 mL.	i
2. Comment calculer l'avancement maximal de la transformation de l'acide chlorhydrique avec l'eau qui se produit dans la solution à disposition ? On considèrera toujours 100 mL de solution.	i

	n protocole pour déterminer l'avancement final de la transformation de l'acide avec l'eau qui se produit dans la solution à disposition.
APPEL N°1	Appeler le professeur pour lui présenter le protocole expérimental ou en cas de difficulté
	30 min conseillées
	œuvre le protocole pour déterminer l'avancement final des réactions de l'acide avec l'eau et de l'acide chlorhydrique avec l'eau.
Mesures :	o áthanoïquo : nH = Colution d'acido chlorhydriquo : nH =
Solution a acide	e éthanoïque : $pH_{mesuré}$ = Solution d'acide chlorhydrique : $pH_{mesuré}$ =
	de l'avancement final pour un volume fictif de 100 mL :
Solution d'acide	e etnanoique :
Solution d'acide	e chlorhydrique :

Mesur	le pH initial de la solution noté pH _i =
Dans le	bécher 1, ajouter une pointe de spatule d'éthanoate de sodium ${ m CH_3CO_2Na_{(s)}}$.
Dans le	bécher 2, verser, avec précaution, deux ou trois gouttes d'acide éthanoïque pur.
Agiter,	uis mesurer les pH des solutions obtenues, notés respectivement pH ₁ et pH ₂
	$pH_1 = et pH_2 =$
On sup	ose que les volumes des solutions n'ont pas varié lors des expériences.
APPE	N°2 Appeler le professeur pour lui présenter vos résultats
\$	··· · · · · · · · · · · · · · · · · ·
	R: ② 30 min conseillées
=	quez pourquoi l'acide éthanoïque est un acide faible alors que l'acide chlorhydrique est un e fort.
	ment varie la concentration [H ₃ O ⁺] dans la solution d'acide éthanoïque lorsqu'on ajoute de
	anoate de sodium ? Dans quel sens de l'équation de la réaction, le système chimique a-t-il ué ?
	ment varie la concentration [H₃O⁺] dans la solution d'acide éthanoïque lorsqu'on ajoute de
	de éthanoïque pur ? Dans quel sens de l'équation de la réaction, le système chimique a-t-il ué ?

5. Dans deux béchers identiques, verser environ 20 mL de solution aqueuse d'acide éthanoïque de concentration en soluté apporté $C_{CH_3COOH} = 1.0 \times 10^{-2} \text{ mol.L}^{-1}$.

	la signification des symboles $\ensuremath{ ightharpoonde}$ et $ ightarrow$. Peut-on utiliser aussi bien l'un que critures sont-elles liées à deux situations différentes ?
APPEL N°3 る	Appeler le professeur pour lui présenter vos conclusions ou en cas de difficulté
90	
OUR S'ÉVALUER	

Analyser	coefficient 2		А																					В																
Réaliser	coefficient 2	A B							C D							A	4		В					(С		D													
Valider	coefficient 2	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	B C D									
Note		20	18	16	15	18	17	15	13	16	15	12	11	15	13	11	10	18	17	15	13	17	16	13	12	15	13	11	10	13	12	10	8							
Analyser	coefficient 2 C D																																							
Réaliser	coefficient 2										B C D A										В				(C			[)										
Valider	coefficient 2	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D	Α	В	С	D							
Note		16	15	12	11	15	13	11	10	12	11	8	7	11	10	7	6	15	13	11	10	13	12	10	8	11	10	7	6	10	8	6	5							